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Chapter 1

Introduction

As we move towards more complete image understanding, having more precise and

detailed object recognition becomes crucial. In this context, one cares not only

about classifying images, but also about precisely estimating the class and location

of objects contained within the images, a problem known as object detection.

The main advances in object detection were achieved thanks to improvements

in object representations and machine learning models. A prominent example of

a state-of-the-art detection system is the Deformable Part-based Model (DPM)

(2). It builds on carefully designed representations and kinematically inspired part

decompositions of objects, expressed as a graphical model. Using discriminative

learning of graphical models allows for building high-precision part-based models

for variety of object classes.

Manually engineered representations in conjunction with shallow discrimina-

tively trained models have been among the best performing paradigms for the re-

lated problem of object classification as well (3). In the last years, however, Deep

Neural Networks (DNNs) (4)have emerged as a powerful machine learning model.

DNNs exhibit major differences from traditional approaches for classification.

First, they are deep architectures which have the capacity to learn more complex

models than shallow ones [2]. This expressivity and robust training algorithms

allow for learning powerful object representations without the need to hand design

features. This has been empirically demonstrated on the challenging ImageNet

classification task (5) across thousands of classes (6; 24)

In this work, we exploit the power of Deep Comvolution Neural Networks lever-

aging Apache Spark and GPUs for the problem of object detection, where we not

only classify but also try to precisely localize objects. The problem we are address

here is challenging, since we want to detect a potentially large number object in-
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stances with varying sizes in the same image using a limited amount of computing

resources.

Another problem that we tried to tackle is Deep Visual-Semantic Alignments for

Generating Image Descriptions. The task is to generates natural language descrip-

tions of images and their regions. The approach we use leverages datasets of images

and their sentence descriptions to learn about the inter-modal correspondences be-

tween language and visual data. This was originally proposed by Andrej Karpathy

from Stanford University. The alignment model is based on a novel combination of

Convolutional Neural Networks over image regions, bidirectional Recurrent Neural

Networks over sentences, and a structured objective that aligns the two modalities

through a multimodal embedding.

Then we also experimented with dense captioning, which requires a computer

vision system to both localize and describe salient regions in images in natural

language. The dense caption- ing task generalizes object detection when the de-

scriptions consist of a single word, and Image Captioning when one predicted region

covers the full image. To address the local- ization and description task jointly we

used a Fully Con- volutional Localization Network (FCLN) architecture that pro-

cesses an image with a single, efficient forward pass, re- quires no external regions

proposals, and can be trained end-to-end with a single round of optimization. The

architecture is composed of a Convolutional Network, a novel dense localization

layer, and Recurrent Neural Network language model that generates the label se-

quences.

We also did experiments on different hardware to study the effect of computa-

tional resource on training time, and thus the quality of model trained. The no of

parameters that can be trained directly depends on the computational resource and

memory available. And, the performance is directly correlated with the number of

parameters learned.

2



Chapter 2

Related Work

2.1 Dense image annotations

Barnard et al. (19) and Socher et. al. (20) studied the multimodal correspondence

between words and images to annotate segments of images. Several works [ (21),

(23), (24), (31)] studied the problem of holistic scene understanding in which the

scene type, objects and their spatial support in the image is inferred. However, the

focus of these works is on correctly labeling scenes, objects and regions with a fixed

set of categories, while our focus is on richer and higher-level descriptions of regions

and the implementation on GPUs and Apache Spark.

2.2 Neural networks in visual and language do-

mains

Multiple approaches have been developed for representing im- ages and words in

higher-level representations. On the im- age side, Convolutional Neural Networks

(CNNs) [(27), (28)] have recently emerged as a powerful class of models for image

classification and object detection Recurrent Neural Networks have been previously

used in language modeling. [(25), (26)]
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Chapter 3

Data Set

Object detection task similar in style to PASCAL VOC Challenge. There are 200

basic-level categories for this task which are fully annotated on the test data, i.e.

bounding boxes for all categories in the image have been labeled. The categories

were carefully chosen considering different factors such as object scale, level of image

clutterness, average number of object instance, and several others. Some of the test

images will contain none of the 200 categories.

3.1 PASCAL

The training data provided consists of a set of images; each image has an annotation

file giving a bounding box and object class label for each object in one of the twenty

classes present in the image. multiple objects from multiple classes may be present

in the same image.

A subset of images are also annotated with pixel-wise segmentation of each

object present, to support the segmentation competition.

20 classes. The train/val data has 11,530 images containing 27,450 ROI anno-

tated objects and 6,929 segmentations.

3.2 IMAGENET

ImageNet is an image dataset organized according to the WordNet hierarchy. Each

meaningful concept in WordNet, possibly described by multiple words or word

phrases, is called a ”synonym set” or ”synset”. There are more than 100,000 synsets

in WordNet, majority of them are nouns (80,000+). ImageNet provides on average
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1000 images to illustrate each synset. Images of each concept are quality-controlled

and human-annotated. In its completion, it is expected that ImageNet will offer

tens of millions of cleanly sorted images for most of the concepts in the WordNet

hierarchy.

3.2.1 Statistice

• Total number of non-empty synsets: 21841

• Total number of images: 14,197,122

• Number of images with bounding box annotations: 1,034,908

• Number of synsets with SIFT features: 1000

• Number of images with SIFT features: 1.2 million

Comparative scale

PASCAL VOC 2012 ILSVRC 2014

Number of object classes 20 200

Training Num images 5717 456567

Num objects 13609 478807

Validation Num images 5823 20121

Num objects 13841 55502

Testing Num images 10991 40152

Num objects — —
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Chapter 4

Hardware Specifications

The following systems have been used for all the computational purposes.

4.1 Apache Spark Cluster

The Spark Cluster consists of 17 nodes with the following specifications.

Processor
Intel Corporation Xeon E7 v2/Xeon E5

v2/Core i7

Clock Speed 2.30 GHz

Cores 12

Cache 15MB (L3 Cache)

RAM 128GB

4.2 GPU Server

The GPU server has the following specifications:

GPU
NVIDIA Corporation GK110GL [Tesla

K20m]

Processor Intel Corporation Xeon E5/Core i7

Clock Speed 2.30 GHz

Cores 12

Cache 15MB (L3 Cache)

RAM 64GB
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4.3 Laptop

We couldn’t get the required permissions to install important tools on the server,

so we had to rely on my laptop also. The laptop has the following specifications:

Model Samsung NP550P5C-S02IN

GPU NVIDIA GeForce GT 650M

Processor Intel Core i7-3610QM

Clock Speed 2.30 GHz

Cache 6MB (L3 Cache)

RAM 8GB

7



Chapter 5

Standard Competitions

5.1 PASCAL Visual Object Classes Challenge

The main goal of this challenge is to recognize objects from a number of visual object

classes in realistic scenes (i.e. not pre-segmented objects). It is fundamentally a

supervised learning learning problem in that a training set of labelled images is

provided. The twenty object classes that have been selected are:

• Person: person

• Animal: bird, cat, cow, dog, horse, sheep

• Vehicle: aeroplane, bicycle, boat, bus, car, motorbike, train

• Indoor: bottle, chair, dining table, potted plant, sofa, tv/monitor

There are three main object recognition competitions: classification, detection,

and segmentation, a competition on action classification, and a competition on large

scale recognition run by ImageNet. In addition there is a ”taster” competition on

person layout.

5.1.1 Classification Competitions

For each of the twenty classes, predicting presence/absence of an example of that

class in the test image.
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Figure 5.1: 20 classes

5.1.2 Detection Competitions

Predicting the bounding box and label of each object from the twenty target classes

in the test image.

5.1.3 Segmentation Competitions

Generating pixel-wise segmentations giving the class of the object visible at each

pixel, or ”background” otherwise.

5.1.4 Action Classification Competition

Predicting the action(s) being performed by a person in a still image.

5.2 ImageNet Large Scale Visual Recognition Chal-

lenge

The ImageNet Large Scale Visual Recognition Challenge (ILSVRC) evaluates algo-

rithms for object detection and image classification at large scale. One high level

motivation is to allow researchers to compare progress in detection across a wider
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variety of objects – taking advantage of the quite expensive labeling effort. An-

other motivation is to measure the progress of computer vision for large scale image

indexing for retrieval and annotation.

The ImageNet Large Scale Visual Recognition Challenge is a benchmark in

object category classi- fication and detection on hundreds of object categories and

millions of images. The challenge has been run annually from 2010 to present,

attracting participation from more than fifty institutions

The ImageNet Large Scale Visual Recognition Challenge (ILSVRC) has been

running annually for five years (since 2010) and has become the standard bench-

mark for large-scale object recognition.1 ILSVRC follows in the footsteps of the

PASCAL VOC challenge (Everingham et al., 2012), established in 2005, which set

the precedent for standardized evaluation of recognition algorithms in the form of

yearly competitions. As in PASCAL VOC, ILSVRC consists of two components:

1. a publically available dataset, and

2. an annual competition and corresponding workshop.

The dataset allows for the development and comparison of categorical object

recognition algorithms, and the competition and workshop provide a way to track

the progress and discuss the lessons learned from the most successful and innovative

entries each year.

The publically released dataset contains a set of manually annotated training

images. A set of test images is also released, with the manual annotations withheld.2

Participants train their algorithms using the training images and then automati-

cally annotate the test images. These predicted annotations are submitted to the

evaluation server. Results of the evaluation are revealed at the end of the compe-

tition period and authors are invited to share insights at the workshop held at the

International Conference on Computer Vision (ICCV) or European Conference on

Computer Vision (ECCV) in alternate years.

5.2.1 Workshop

Every year of the challenge there is a corresponding workshop at one of the premier

computer vision conferences. The purpose of the workshop is to present the methods

and results of the challenge. Challenge participants with the most successful and

innovative entries are invited to present.
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Chapter 6

Methodologies

6.1 SIFT and LBT + Stochastic SVM

Local Binary Patterns and Scale Invariant Feature Transform. ILSVRC2010. The

first year the challenge consisted of just the classification task. The winning entry

from NEC team (Lin et al., 2011) used SIFT (Lowe, 2004) and LBP (Ahonen et

al., 2006) features with two nonlinear coding representations (Zhou et al., 2010;

Wang et al., 2010) and a stochastic SVM. The honorable mention XRCE team

(Perronnin et al., 2010) used an improved Fisher vector representation (Perronnin

and Dance, 2007) along with PCA dimensionality reduction and data compression

followed by a linear SVM. Fisher vectorbased methods have evolved over five years

of the challenge and continued performing strongly in every ILSVRC from 2010 to

2014.

6.2 Histogram intersection kernel SVM

ILSVRC2011. The winning classification entry in 2011 was the 2010 runner-up team

XRCE, applying highdimensional image signatures (Perronnin et al., 2010) with

compression using product quantization (Sanchez and Perronnin, 2011) and one-

vs-all linear SVMs. The single-object localization competition was held for the first

time, with two brave entries. The winner was the UvA team using a selective search

approach to generate class-independent object hypothesis regions (van de Sande et

al., 2011b), followed by dense sampling and vector quantization of several color

SIFT features (van de Sande et al., 2010), pooling with spatial pyramid matching

(Lazebnik et al., 2006), and classifying with a histogram intersection kernel SVM
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(Maji and Malik, 2009) trained on a GPU (van de Sande et al., 2011a).

6.3 Large-scale deep neural network

ILSVRC2012. This was a turning point for large-scale object recognition, when

large-scale deep neural networks entered the scene. The undisputed winner of both

the classification and localization tasks in 2012 was the SuperVision team. They

trained a large, deep convolutional neural network on RGB values, with 60 mil-

lion parameters using an efficient GPU implementation and a novel hidden-unit

dropout trick (Krizhevsky et al., 2012; Hinton et al., 2012). The second place in

image classification went to the ISI team, which used Fisher vectors (Sanchez and

Perronnin, 2011) and a streamlined version of Graphical Gaussian Vectors (Harada

and Kuniyoshi, 2012), along with linear classifiers using Passive-Aggressive (PA) al-

gorithm (Crammer et al., 2006). The second place in single-object localization went

to the VGG, with an image classification system including dense SIFT features and

color statistics (Lowe, 2004), a Fisher vector representation (Sanchez and Perronnin,

2011), and a linear SVM classifier, plus additional insights from (Arandjelovic and

Zisserman, 2012; Sanchez et al., 2012). Both ISI and VGG used (Felzenszwalb et

al., 2010) for object localization; SuperVision used a regression model trained to

predict bounding box locations. Despite the weaker detection model, SuperVision

handily won the object localization task. A detailed analysis and comparison of

the SuperVision and VGG submissions on the single-object localization task can be

found in (Russakovsky et al., 2013) The influence of the success of the SuperVision

model can be clearly seen in ILSVRC2013 and ILSVRC2014.

6.4 Deep CNN averaged together

ILSVRC2013. There were 24 teams participating in the ILSVRC2013 competition,

compared to 21 in the previous three years combined. Following the success of the

deep learning-based method in 2012, the vast majority of entries in 2013 used deep

convolutional neural networks in their submission. The winner of the classification

task was Clarifai, with several large deep convolutional networks averaged together.

The network architectures were chosen using the visualization technique of (Zeiler

and Fergus, 2013), and they were trained on the GPU following (Zeiler et al., 2011)

using the dropout technique (Krizhevsky et al., 2012).

ILSVRC2014. 2014 attracted the most submissions, with 36 teams submitting
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123 entries compared to just 24 teams in 2013 a 1.5x increase in participation.9 As

in 2013 almost all teams used convolutional neural networks as the basis for their

submission. Significant progress has been made in just one year: image classification

error was almost halved since ILSVRC2013 and object detection mean average

precision almost doubled compared to ILSVRC2013.

The winning image classification with provided data team was GoogLeNet,

which explored an improved convolutional neural network architecture combining

the multi-scale idea with intuitions gained from the Hebbian principle. Additional

dimension reduction layers allowed them to increase both the depth and the width

6.5 CNN + RNN + FCNN

The goal is to design an architecture that jointly localizes regions of interest and

then describes each with natural language. The primary challenge is to develop

a model that supports end-to-end training with a single step of optimization, and

both efficient and effective inference. We used the architecture proposed by Andrej

Kerpathy et. al. (14) which draws on architectural elements present in recent work

on object detection, image captioning and soft spatial attention to simultaneously

address these design constraints. More details about the approach and architecture

are provided in later sections
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Chapter 7

Statistical Significance

For each object category, we take the best performance of any entry submit-

ted to ILSVRC2012-2014 (including entries using additional training data). Given

these optimistic results we show the easiest and harder classes for each task. The

numbers in parentheses indicate classification and localization accuracy. For image

classification the 10 easiest classes are randomly selected from among 121 object

classes with 100% accuracy.
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Chapter 8

Approach for this work

8.1 Classification with Deep Convolutional Neu-

ral Networks

8.1.1 Architecture

The architecture of our network is summarized in Figure. It contains eight learned

layers five convolutional and three fully-connected.(11)

Figure 8.1: An illustration of the architecture of our CNN, explicitly showing the

delineation of responsibilities between the two GPUs. One GPU runs the layer-

parts at the top of the figure while the other runs the layer-parts at the bottom.

The GPUs communicate only at certain layers. The networks input is 150,528-

dimensional, and the number of neurons in the networks remaining layers is given

by 253,440186,62464,89664,89643,264 409640961000.
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8.1.2 ReLU Nonlinearity

The standard way to model a neurons output f as a function of its input x is with

f(x) = tanh(x) or f(x) = (1 + ex)1

. In terms of training time with gradient descent, these saturating nonlinearities

are much slower than the non-saturating nonlinearity

f(x) = max(0, x)

.

8.1.3 Training on Multiple GPUs

A single GTX 580 GPU has only 3GB of memory, which limits the maximum size

of the networks that can be trained on it. It turns out that 1.2 million training

examples are enough to train networks which are too big to fit on one GPU

The parallelization scheme that we employ essentially puts half of the kernels

(or neurons) on each GPU, with one additional trick: the GPUs communicate only

in certain layers.

8.1.4 Overlapping Pooling

Pooling layers in CNNs summarize the outputs of neighboring groups of neurons

in the same kernel map. Traditionally, the neighborhoods summarized by adjacent

pooling units do not overlap (e.g., [17, 11, 4]). To be more precise, a pooling layer

can be thought of as consisting of a grid of pooling units spaced s pixels apart, each

summarizing a neighborhood of size z z centered at the location of the pooling unit.

If we set s = z, we obtain traditional local pooling as commonly employed in CNNs.

If we set s ¡ z, we obtain overlapping pooling. This is what we use throughout our

network, with s = 2 and z = 3. This scheme reduces the top-1 and top-5 error rates

by 0.4% and 0.3%, respectively, as compared with the non-overlapping scheme s =

2, z = 2, which produces output of equivalent dimensions. We generally observe

during training that models with overlapping pooling find it slightly more difficult

to overfit.

8.1.5 Overall Architecture

Now we are ready to describe the overall architecture of our CNN. As depicted in

Figure, the net contains eight layers with weights; the first five are convolutional

17



and the remaining three are fullyconnected. The output of the last fully-connected

layer is fed to a 1000-way softmax which produces a distribution over the 1000 class

labels. The network maximizes the multinomial logistic regression objective, which

is equivalent to maximizing the average across training cases of the log-probability

of the correct label under the prediction distribution.

8.2 GoogleNet

8.2.1 Architecture Details

The main idea of the Inception architecture is to consider how an optimal local

sparse structure of a convolutional vision network can be approximated and covered

by readily available dense components. Note that assuming translation invariance

means that our network will be built from convolutional building blocks. All we

need is to find the optimal local construction and to repeat it spatially

In order to avoid patch-alignment issues, current incarnations of the Inception

architecture are restricted to filter sizes 11, 33 and 55; this decision was based more

on convenience rather than necessity. It also means that the suggested architecture

is a combination of all those layers with their output filter banks concatenated into

a single output vector forming the input of the next stage.

Additionally, since pooling operations have been essential for the success of cur-

rent convolutional networks, it suggests that adding an alternative parallel pooling

path in each such stage should have additional beneficial effect, too

One big problem with the above modules, at least in this nave form, is that

even a modest number of 55 convolutions can be prohibitively expensive on top of a

convolutional layer with a large number of filters. This problem becomes even more

pronounced once pooling units are added to the mix: the number of output filters

equals to the number of filters in the previous stage. The merging of output of the

pooling layer with outputs of the convolutional layers would lead to an inevitable

increase in the number of outputs from stage to stage. While this architecture might

cover the optimal sparse structure, it would do it very inef- ficiently, leading to a

computational blow up within a few stages.

In general, an Inception network is a network consisting of modules of the above

type stacked upon each other, with occasional max-pooling layers with stride 2 to

halve the resolution of the grid. For technical reasons (memory efficiency during

training), it seemed beneficial to start using Inception modules only at higher layers
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while keeping the lower layers in traditional convolutional fashion. This is not

strictly necessary, simply reflecting some infrastructural inefficiencies in our current

implementation.

8.3 Captioning using CNN + RNN + FCLL

The aim is to design an architecture that jointly localizes regions of interest and

then describes each with natural language. The primary challenge is to develop

a model that supports end-to-end training with a single step of optimization, and

both efficient and effective inference. We used the architecture proposed by Andrej

Kerpathy et. al. (14) which draws on architectural elements present in recent work

on object detection, image captioning and soft spatial attention to simultaneously

address these design constraints.

Figure 8.2: Model overview. An input image is first processed a CNN. The Lo-

calization Layer proposes regions and smoothly extracts a batch of corresponding

activations using bilinear interpolation. These regions are processed with a fully-

connected recognition network and described with an RNN language model. The

model is trained end-to-end with gradient descent.
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8.3.1 Model Architecture

8.3.1.1 Convolutional Network

We use the VGG-16 architecture (15) for its state-of-the-art performance (16). It

consists of 13 layers of 3x3 convolutions interspersed with 5 layers of 2x2 max

pooling. We remove the final pooling layer, so an input image of shape 3xWxH

gives rise to a tensor of features of shape CxW ′xH ′ where C = 512, W’= (W/16),

and H’= (H/16). The output of this network encodes the appearance of the image at

a set of uniformly sampled image locations, and forms the input to the localization

layer.

8.3.1.2 Fully Convolutional Localization Layer

The localization layer receives an input tensor of activations, identifies spatial re-

gions of interest and smoothly extracts a fixed-sized representation from each region.

The approach is based on that of Faster R-CNN, but we replace their ToI pooling

mechanism with bilinear interpolation, allowing the model to propagate gradients

backward through the coordinates of predicted regions. This modification opens up

the possibility of predicting affine or morphed region proposals instead of bounding

boxes, but we leave these extensions to future work

Inputs/outputs. The localization layer accepts a tensor of activations of size

CxW ′xH ′. It then internally selects B regions of interest and returns three output

tensors giving information about these regions:

• Region Coordinates : A matrix of shape Bx4 giving bounding box coordi-

nates for each output region.

• Region Scores : A vector of length B giving a confidence score for each out-

put region. Regions with high confidence scores are more likely to correspond

to ground-truth regions of interest.

• Region Features: A tensor of shape BxCxXxY giving features for output

regions; is represented by an XxY grid of C -dimensional features.

Convolutional Anchors The localization layer predicts region proposals by re-

gressing offsets from a set of translation-invariant anchors. In particular, we project

each point in the W ′xH ′ grid of input features back into the WxH image plane,

and con-sider k anchor boxes of different aspect ratios centered at this projected

point.

20



For each of these k anchor boxes, the localization layer predicts a confidence score

and four scalars regressing from the anchor to the predicted box coordinates. These

are computed by passing the input feature map through a 3x3 convolution with 256

filters, a rectified linear nonlinearity, and a 1x1 convolution with 5k filters. This

results in a tensor of shape 5kxW ′xH ′ containing scores and offsets for all anchors.

Box Sampling: Processing a typical image of size W = 720; H = 540 with

k = 12 anchor boxes gives rise to 17,280 region proposals. Since running the

recognition network and the language model for all proposals would be prohibitively

expensive, it is necessary to subsample them Sampling approach proposed by (17)

is followed.

8.3.1.3 Recognition Network

The recognition network is a fully-connected neural network that processes region

features from the localization layer. The features from each region are flattened

into a vector and passed through two full-connected layers, each using rectified

linear units and regularized using Dropout. For each region this produces a code

of dimension D = 4096 that compactly encodes its visual appearance. The codes

for all positive regions are collected into a matrix of shape BxD and passed to the

RNN language mode

In addition, we allow the recognition network one more chance to refine the

confidence and position of each proposal region. It outputs a final scalar confidence

of each proposed region and four scalars encoding a final spatial offset to be applied

to the region proposal. These two outputs are computed as a linear transform from

the D -dimensional code for each region

8.3.1.4 RNN Language Model

We use the region codes to condition an RNN language model (30), (31), (32)]

8.4 Towards efficient deep CNN implementation

on Apache Spark

Apache Spark is an open source cluster computing framework originally developed

in the AMPLab at University of California, Berkeley. It is a fast and general engine

for large-scale data processing.
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Figure 8.3: Sample output for Dense Captioning
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Figure 8.4: Example captions generated and localized by our model on test images.

We render the top few most confident predictions. On the bottom row we addition-

ally contrast the amount of information our model generates compared to the Full

image RNN.

8.4.1 Core Idea

The Google scientist, Jeffrey Dean promotes one way to large scale data DeepLearn-

ing training with distributed platform, named DistBelief. The key idea is model

replica, each one takes the same current model parameters, but get the different data

shards to train; then each model replica update the gradient to central parameter

server.

We intend to splits the train data into different data shards, each one will be

trained by the model replica. After all model replica finish the current epoch train,

the update gradient will be reduced to update totally; then each model replica will

start the next epoch train with new parameter until convergence or get to some stop

conditions. The model replica can train the data with different way based on gradi-

ent update; eg, mini-batch gradient descent, Conjugate gradient, or L-BFGS.(CG

always win the best result). We are using OpenDL for this implementation.
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8.4.2 Third Party Software

• The Spark light cluster computing platform. Now we just use the latest

version, 1.5.2 just released recently.

• The Mallet, java based machine learning package of UMASS. We use this one

mainly for mathematical algorithm, eg, conjugate gradient, L-BFGS.

• JBlas, library of Linear Algebra for Java, refer to http://mikiobraun.github.io/jblas/.

It has been used mainly for matrix computation optimization.
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Chapter 9

Additional Experiments

9.1 A Neural Algorithm of Artistic Style

I implemented this paper on mixing artist content and style, recently published

by Google Research.(13) The system uses neural representations to separate and

recombine content and style of arbitrary images, providing a neural algorithm for

the creation of artistic images.

Figure 9.1: A Sample output after mixing different Artistic Styles
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Chapter 10

Future Work

We will continue with efficient implementation of deep learning algorithms on

Apache Spark for object identification in images. We are also working with the

Spark community to integrate CNN and RNN algorithms with the core Spark API.

We might also consider going with distributed GPU setup. Then the next step

would be to evaluate the performance & compare the performance of the system

with other state-of-the-art systems & approaches.

Also, non rectangular bounding boxed for regions in image can also be used for

better identification and captioning.

The code for the work will be released soon.
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